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Abstract

Soil bacteria such as pseudomonads may reduce pathogen pressure for plants, both by activating plant

defence mechanisms and by inhibiting pathogens directly due to the production of antibiotics. These effects

are hard to distinguish under field conditions, impairing estimations of their relative contributions to plant

health. A split-root system was set up with barley to quantify systemic and local effects of pre-inoculation with

Pseudomonas fluorescens on the subsequent infection process by the fungal pathogen Fusarium graminearum.

One root half was inoculated with F. graminearum in combination with P. fluorescens strain CHA0 or its isogenic

antibiotic-deficient mutant CHA19. Bacteria were inoculated either together with the fungal pathogen or in

separate halves of the root system to separate local and systemic effects. The short-term plant response to

fungal infection was followed by using the short-lived isotopic tracer 11CO2 to track the delivery of recent

photoassimilates to each root half. In the absence of bacteria, fungal infection diverted carbon from the shoot to

healthy roots, rather than to infected roots, although the overall partitioning from the shoot to the entire root

system was not modified. Both local and systemic pre-inoculation with P. fluorescens CHA0 prevented the

diversion of carbon as well as preventing a reduction in plant biomass in response to F. graminearum infection,

whereas the non-antibiotic-producing mutant CHA19 lacked this ability. The results suggest that the activation

of plant defences is a central feature of biocontrol bacteria which may even surpass the effects of direct

pathogen inhibition.
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Introduction

The necrotrophic fungus Fusarium graminearum (Schwabe) is

a devastating pathogen of barley and other cereals, causing

significant yield losses by diseases known as ‘Fusarium head

blight’ and ‘root rot’ (Parry et al., 1995) and also by

contaminating the grains with fungal toxins (Mesterhazy,

2002). Plants use different mechanisms of constitutive and

induced defence against microbial pathogens, comprising

chitinase production or lignification of the cell wall (Kang

and Buchenauer, 2000). Upon encounter, pattern recognition

receptors (PRRs) in the plant cell membrane identify the

type of pathogen and activate mitogen-acivated protein

kinase (MAPK) cascade signalling pathways to direct plant

resources for optimal investment of pathogen defence for

local and systemic resistance (Zhang and Klessig, 2001).

Soil microorganisms are key regulators of plant resistance

against pathogens, and beneficial bacteria can strongly in-

fluence the health status of plants. In particular, pseudomo-

nads form a ubiquitous and well described group of plant

beneficial bacteria that affect the potential of pathogens to

infect plants. Pseudomonads synthesize a variety of antifun-

gal compounds, which inhibit the growth of numerous soil-

borne pathogens (Compant et al., 2005) and prevent plant

infection. Moreover, these bacteria elicit plant-induced sys-

temic resistance (ISR) in which a plant reacts to metabolites

and antigens of these bacteria. For example, the antifungal

bacterial toxin 2,4-diacetylphloroglucinol (DAPG) elicits

ISR (Iavicoli et al., 2003). ISR arises from an up-regulation

of pathogenesis-related (PR) genes (Bakker, 2007) which

protects against further infections by fungal pathogens. Thus,

both inhibition of pathogens and activation of plant defences

reduce pathogen impact. However, these effects have usually

been described separately (Pieterse et al., 2003; Compant

et al., 2005), making it hard to evaluate their relative im-

portance in plant health.

In this study the relative contribution of pathogen

inhibition and elicitation of plant defences by Pseudomonas

fluorescens CHA0 on the infection of barley plants by the

soil-borne pathogen F. graminearum was investigated. The

contributions of pathogen inhibition and elicitation of plant

defences, each caused by P. fluorescens, were deduced by

comparing its local and systemic effects on barley plants

which were subsequently infected by the soil-borne patho-

gen F. graminearum. Plants rapidly respond to pathogen or

herbivore attack by altering the partitioning of photoassimi-

lates (Anten and Pierik, 2010), and diversion of carbon from

infected roots is a marker for early recognition of pathogen

attack (Henkes et al., 2008). These changes are modulated by

the jasmonic acid pathway (Henkes et al., 2008), a pathway

central for resistance against F. graminearum in wheat (Li

and Yen, 2008).

In this study, the rapid changes in carbon partitioning

were followed by application of 11CO2 to a leaf and mon-

itoring carbon allocation of the tracer in the plant in a non-

invasive manner with high time resolution. In addition, the

local and systemic long-term effects of pre-inoculation with

P. fluorescens on plant shoot and root biomass in response

to subsequent infection with F. graminearum were investi-

gated in a split-root system.

Materials and methods

Plants

Seeds of barley (Hordeum vulgare L. cv. ‘Barke’, Irnich Inc.,
Frechen, Germany) were dehusked by incubation in 50% H2SO4

for 60 min under agitation, and washed three times with distilled
water to remove the acid. Seeds were sterilized with a freshly
prepared 2% AgNO3 solution for 20 min on a shaker at 200 rpm,
washed with a sterile 1% NaCl solution, with distilled water, again
with NaCl, and five times with distilled water to remove the
remaining AgNO3 completely.
The seeds were germinated in darkness at 20 �C on a diluted

nutrient agar [agar 8 g l�1, nutrient broth 0.8 g l�1 in Neff’s
modified amoeba saline (AS; Page, 1988)]. After 4 d, seedlings were
checked visually for contaminations with microorganisms under
the microscope and in addition no clouding of growth medium was
observed. Sterile plants were transferred into silicone closed-cell
foam rubber stoppers with a longitudinal slit (VWR, Darmstadt,
Germany) which then sealed the roots into glass tubes (length
135 mm, 25 mm diameter) containing 50 ml of sterile 50% Hoag-
land solution. The plants were grown at 60% relative humidity
with 16 h daylength (light intensity of 100 lE m�2 s�1, tempera-
ture 25�C) and 8 h night (20�C). After 7 d, individual plants were
transferred into two-chamber split-root rhizotrons. The roots were
separated into two roughly equal parts into the two chambers
of the rhizotron, and each chamber was sealed with silicone grease
(Baysilone, Bayer, Germany). The rhizotron chambers were each
supplied with 300 ml of 50% Hoagland solution containing 5 mM
MES buffer [2-(N-morpholino) ethanesulphonic acid; pH 5.8] and
plants were allowed to grow for an additional 5–7 d until radio-
tracer experiments were started with 2- to 3-week-old plants.

Fusarium graminearum inoculum

The pathogenic fungus F. graminearum (Schwabe) strain DSM
1095, isolated from Zea mays roots, was obtained from ‘Deutsche
Sammlung von Mikroorganismen und Zellkulturen’ (DSMZ;
Braunschweig, Germany). The strain was kept on Luria–Bertani
(LB) agar plates at 20 �C. To prepare inoculums for the infection
of the roots, a piece of hyphal material of the F. graminearum
culture was taken from the agar plate and grown in liquid LB
medium for 2 d at 20 �C under agitation of 200 rpm, and adjusted
to an OD600 of 0.45. The inoculum consisted exclusively of fungal
hyphae, with no detectable macrospores. According to the treat-
ment (see below), 5 ml of this inoculum was introduced to one or
both sides of the split-root system.

Pseudomonas strains

Pseudomonas fluorescens CHA0 and its isogenic gacS-deficient
mutant CHA19, carrying a mini Tn7 chromosomal green fluores-
cent protein (GFP) insert (Jousset et al., 2006), were kept routinely
on nutrient agar (blood agar base 40 g l�1, yeast extract 5 g l�1)
supplemented with 25 lg ml�1 kanamycin (Sigma, Germany).
Prior to inoculation, bacteria were grown in NYB medium
(Nutrient Yeast Broth; nutrient broth 25 g l�1, yeast extract 5 g
l�1) at 30 �C under agitation of 200 rpm. Late exponential phase
bacteria were harvested by centrifugation (5300 g for 2 min),
washed in saline solution (0.9% NaCl), and resuspended to an
OD600 of 0.2 in AS medium which corresponds to a bacterial
concentration of 0.43109 colony-forming units (CFU) per ml.

Split-root rhizotrons

A split-root system in which pathogen and bacteria were applied
either together or in separate compartments of the root system
allowed the identification of either local or systemic effects.
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Split-root rhizotrons (Fig. 1) for 11C experiments were built from
a single block of polypropylene (330 mm height, 235 mm width,
18 mm depth) with a transparent polycarbonate cover. Prior to
each experiment, the rhizotrons were autoclaved for 20 min at
120 �C and 1.1 bar. Each side of the rhizotron was filled with
300 ml of a sterile hydroponic solution containing 50% Hoagland
(buffered with 5 mM MES; adjusted to pH 5.8 with KOH). To
avoid anoxia during the experiments, both root halves were
aerated with sterile filtered air. Long-term effects of Fusarium
infection on barley biomass were investigated using a similar
protocol but with a simplified split-root system (see below).

11C labelling

The effect of pathogen infection on a barley plant was quantified
non-invasively by the use of 11C to follow carbon partitioning,
a very sensitive measure of whole-plant responses. The short 20 min
half-life of the 11C tracer permits repeated labelling of each plant to
follow changes over the long term as well. Two to three days prior
to an 11C experiment a plant was transferred to acclimate in the
growth chamber used for radiotracer studies. At 15 h prior to
labelling, the second leaf was sealed with two-component silicone
rubber (Xantopren VL, Heraeus Kulzer, Hanau, Germany) into
a cylindrical Plexiglas� leaf chamber (70 mm length, 18 mm
diameter), and allowed to recover from the mechanical disturbance.
The leaf chamber received air from outside and, then, at ;4 h into
the photoperiod, it was connected to the CO2- and humidity-
regulated closed gas exchange system in preparation for labelling.
The leaf was pulse-labelled three times per day on two sequential
days, with ;100 MBq of 11CO2 at ;5.0, 7.5, and 10.5 h into the
photoperiod. Light intensity was 350 lE m�2 s�1 at the load leaf
and 300 lE m�2 s�1 at the rest of the shoot. Fresh Hoagland
solution was added as necessary through a 0.22 lm filter. The
11CO2 was produced in the INC, Forschungszentrum Jülich.

Treatments

To investigate the effect of F. graminearum on the carbon
partitioning between the two root halves, one side of the root
system (Fus+) was inoculated with 5 ml of freshly prepared
F. graminearum inoculum in LB medium in each of these experi-
ments. The other side (Fus–) received an equal quantity of sterile
LB medium. This experiment denoted ‘Fus’ was repeated eight
times with different plants. In a second experiment, the entire root
system was infected with 10 ml of Fusarium inoculum (denoted
Fus/Fus; n¼3 replicates with different plants).
To investigate whether P. fluorescens affected carbon partition-

ing, 3 ml of a suspension of CHA0 or CHA19 (OD600¼0.2) in AS
medium were added to one side of the root system during the
second 11C pulse-labelling interval (see treatment timing below).
The control side received 3 ml of sterile AS. Experiments were
repeated nine times with separate plants with the strain CHA0,
and 10 times with the gacS mutant CHA19.
To test for a local and systemic effect of P. fluorescens CHA0

upon subsequent infection by F. graminearum, one side of the root
system was inoculated with one of the P. fluorescens strains as
described above, and left for 48 h to allow the bacteria to colonize
the roots. Then the plants were placed into the 11C measuring
system and infected with F. graminearum as described above,
in the following combinations: (i) CHA0 and F. graminearum
on the same root half to test the direct effect of P. fluorescens
on subsequent infection by F. graminearum (Fus&CHA0; n¼5);
(ii) as a control, the non-antibiotic-producing mutant CHA19 and
F. graminearum on the same root half (Fus&CHA19; n¼6); and
(iii) CHA0 and F. graminearum on different sides of the root
system to test for a systemic effect of P. fluorescens on subsequent
infection by F. graminearum (Fus/CHA0; n¼5).

Treatment timing for 11C experiments

For the fungal treatments, root portions were infected during the
second pulse of 11C labelling when tracer activity in the root

detectors peaked (i.e. equal rates of decay and arrival), 60–70 min
after the start of labelling. With this timing any immediate change
in transport could be detected sensitively with a 60 s time
resolution (Minchin and Thorpe, 2003). In contrast to the rapid
effect of jasmonic acid (Henkes et al., 2008), no fast changes in
partitioning were observed here, and therefore just one value was
calculated for each of the six 11C pulses.

11C detection and analysis

Scintillation detectors [Bicron NaI(Tl) detectors, Saint-Gobain
Crystals, Houston, TX, USA] were positioned within radiation
shielding to be uniformly sensitive to well-defined parts of the
plant. Detector counts of the c radiation arising from b+
annihilation were corrected for background, dead time, and their
different sensitivities to equal amounts of tracer. Activity was
measured independently for the following plant parts: (i) shoot (i.e.
the complete shoot except the load leaf); (ii) left root; and (iii) right
root. Strips of clear 4 mm thick Plexiglas� were placed around the
shoot of the plant, to ensure that b+ radiation escaping from the
tissue was annihilated near its source. To analyse the 11C tracer
time series, the ‘input–output’ method (Minchin and Troughton,
1980) was used, which estimates the transfer function for movement
of tracer along a specific transport pathway in the plant (Minchin
and Thorpe, 2003). The pathway is defined by the input and the
output flow of tracer for a specific plant part. The mobilized carbon
from the leaf was considered as input, and tracer entering either
of the root portions (or their sum) was considered as output.
By accounting for radioisotope decay the analysis quantifies the

Fig. 1. Split-root rhizotron for infecting half of the barley root

system with Fusarium graminearum (Fus+) while the other half

is kept sterile (Fus–), showing a barley plant 4 d after infection

by F. graminearum. Aeration was stopped while taking the

photograph.
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transport of ‘recently assimilated carbon’, with the steady-state gain
of the transfer function equal to the partitioning of the mobilized
photoassimilates into the respective sink tissue. Partitioning values
were normalized by dividing each data set by its initial value, in
order to facilitate comparison of treatment responses between
plants, assuming that a response was proportional.

Effects of F. graminearum and P. fluorescens infection on barley

biomass

To detect effects of Fusarium infection in combination with pre-
inoculation of either one of the P. fluorescens strains on plant
biomass, 7-day-old plant seedlings were placed in one microcosm
each. Microcosms were constructed from 2503160315 mm
polycarbonate plates (Jousset et al., 2011) and were autoclaved
prior to establishing the seedlings. Each chamber of the microcosm
(100315035 mm) was filled with 15 ml of an agarized (2% agar)
and sterile 50% Hoagland’s nutrient solution. After the micro-
cosms had cooled, seedlings were transferred to the chambers and
the roots of each plant were distributed equally into the two split-
root chambers. The following treatment combinations were tested:
(i) untreated barley plant (Ctrl; n¼6); (ii) non-antibiotic-producing
mutant P. fluorescens CHA19 and F. graminearum on the same
root half to test the direct effect of P. fluorescens on biomass after
subsequent infection by F. graminearum (Fus&CHA19; n¼6); (iii)
wild-type P. fluorescens CHA0 and F. graminearum on the same
root half (Fus&CHA0; n¼6); and (iv) CHA0 and F. graminearum
on different halves of the root system, to test for a systemic
effect of P. fluorescens on biomass after subsequent infection by
F. graminearum (Fus/CHA0; n¼6).
For the Pseudomonas pre-treatments, 1 ml of a P. fluorescens

CHA0 or CHA19 suspension (adjusted to an OD600¼0.1) was
added to one half of the root system. After 12 h, one side of the
split-root system was infected with 100 mg of Fusarium inoculum
either on the same root half as the Pseudomonas treatments
(Fus&CHA19; Fus&CHA0) or on the opposite side of the split-
root microcosms (Fus/CHA0). The microcosms were covered with
a 6 mm thick polycarbonate lid, sealed with sterile sealing mass
(Terostat VII, Henkel, Düsseldorf, Germany), and held firmly in
place with paper clamps. Fresh weights of shoot and both root
halves were determined 7 d after inoculation with Fusarium.

Statistical analyses

The individual values of the partitioning of mobilized carbon for
each side of the root system, and the ratio between those values,
were analysed using repeated measurement one-way analysis of
variance (ANOVA), with the treatment as categorical predictor and
time as repeated factor. Data for each time point were then analysed
with an independent one-way ANOVA followed by Tukey’s HSD
test. Statistical analyses were carried out using STATISTICA 6.0
(Statsoft, Tulsa, OK, USA).

Results

Effect of Fusarium on C partitioning

Inoculation with F. graminearum always led to successful root

infection, clearly visible by brown necrotic spots on the treated

roots (Fig. 1). Importantly, pathogens were restricted to the

treated root half; in plants where one root half was infected,

the non-treated half showed no visible fungal infection, nor

were hyphae detected in its hydroponic solution.

In plants where either one or both root halves were

infected, the root partitioning of 11C tracer was unaffected

within 28 h compared with control plants (Fig. 2a).

However, infecting only one root half by Fusarium distorted

the 11C distribution between the root halves (Fig. 2b). The
11C partitioning to the untreated root half (Fus–) was

significantly increased by 33, 35, and 46% by 23.5, 24.5,

and 28.0 h after infection, respectively, compared with root

halves of control plants. At the same time, partitioning

to the infected root half (Fus+) declined and was reduced

by 28% at 28 h after infection, compared with control

plants. Consequently, the ratio (r) between partitioning to

each root half of infected compared with uninfected roots

[r ¼ (11C partitioning to Fus+)/(11C partitioning to Fus–)]

was significantly affected, while the ratio r for control plants

remained stable over time (Fig. 2b, Table 2).

Direct effects of P. fluorescens CHA0 and CHA19 on
C partitioning

Root inoculation with either the wild-type strain CHA0 or

the gacS mutant CHA19 only did not significantly affect
11C partitioning over 30 h. Neither the 11C allocation from

the shoot to the entire root system, nor the partitioning

between treated and untreated root halves differed signifi-

cantly from control plants (data not shown).

Interactions between P. fluorescens and
F. graminearum

In all tested combinations, F. graminearum successfully

colonized the infected root halves in the presence of

P. fluorescens as revealed by brown necrotic spots on the

infected roots. Similarly to the single treatments with either

F. graminearum or Pseudomonas (CHA0 or CHA19), carbon

allocation from the shoot to the entire root system was

unaffected by all of the double treatments with P. fluorescens

and subsequent F. graminearum infection on either root

half. However, pre-inoculation of either root half with

Pseudomonas strain CHA0 strongly altered the effect of

F. graminearum on carbon partitioning. Pre-inoculation

of a root half with the wild-type strain CHA0 2 d prior

to inoculation of those same roots by F. graminearum

(Fus&CHA0) completely suppressed the reduction in car-

bon partitioning to the F. graminearum-infected roots. No

differences in 11C partitioning between the root portions

compared with control plants were observed over 28.5 h

(Fig. 3; Tables 1, 2). A crucial result was that this

annihilation of the effect of F. graminearum on carbon

partitioning also occurred systemically when one root half

was pre-inoculated with CHA0 but the other root half was

subsequently inoculated with F. graminearum (CHA0/Fus;

Fig. 3). The systemic and local effects of CHA0, in

suppressing the negative effect of F. graminearum on carbon

partitioning, were indistinguishable (Tables 1, 2).

In contrast to the effect of P. fluorescens CHA0, pre-

inoculation of roots with the gacS mutant P. fluorescens

CHA19 (CHA19&Fus) did not prevent changes in 11C

partitioning in response to infection with F. graminearum

(Fig. 3). However, local pre-inoculation with P. fluorescens

CHA19 slightly reduced the effect of F. graminearum on

carbon partitioning. The effect was reduced by 18% after

28.5 h and this difference was intermediate between the
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values for the response of 11C partitioning to Fus and

Fus&CHA0 treatments (Fig. 3). The difference between

plants with treatments CHA19&Fus and CHA0&Fus

increased with time (Table 1, Fig. 3).

Effect of F. graminearum on plant growth

Fusarium graminearum infection together with the non-

antibiotic-producing mutant P. fluorescens CHA19 (CHA19&

Fus) on the same root half resulted in a 33% lower total plant

mass after 1 week (F1,16¼12.53, P¼0.002) compared with local

or systemic pre-inoculation with the wild-type P. fluorescens

CHA0 prior to F. graminearum infection (Table 3). Local

(CHA0&Fus) or systemic (CHA0/Fus) pre-inoculation with

the wild type to one part of the root system prevented the

growth reduction by F. graminearum infection, giving in-

distinguishable biomasses for treated and uninfected plants

(Ctrl) (F1,16¼0.98, P¼0.34). Pre-inoculation with CHA0 re-

duced the impact of F. graminearum infection on the biomass

of shoot and uninfected roots, but not on the infected root

portion (Table 3).

Discussion

Sensitivity of the 11C tracer method

The 11C tracer technique proved to be ideally suited for

studying the dynamic and rapid changes in partitioning

of recently fixed carbon in barley plants challenged by

the fungal pathogen F. graminearum. The method is non-

invasive and therefore applicable for repeated measure-

ments on the same plant. Further, being both quantitative

and highly sensitive, it allows detection of rapid shifts in

plant carbon allocation within hours, long before changes

in plant biomass or morphology become apparent.

Barley–Fusarium interaction

The split-root system successfully confined microbial infections

to a specific part of the root system, while the other part

Fig. 3. Distribution of recently fixed carbon between barley root

halves after infection with Fusarium graminearum and its modification

by pre-inoculation (2 d) with the Pseudomonas fluorescens strains

CHA0 or CHA19. Carbon partitioning was measured as the fraction

of recent photoassimilate mobilized from an 11CO2-labelled leaf to

each root half. The ratio (side1/side2) is plotted, after normalization to

the corresponding ratio for the plant just before treatment. Ctrl, no

treatment to either root half, plotted ratio (no treatment/no treatment);

Fus, treatment of one root half with F. graminearum, plotted ratio

(F. graminearum treatment/no treatment); Fus&CHA0, treatment of

one root half with F. graminearum after priming the same root half

with CHA0 for 2 d, plotted ratio (F. graminearum plus CHA0/no

treatment); Fus&CHA19, treatment of one root half with F. graminea-

rum after priming the same root half with CHA19 for 2 d, plotted ratio

(F. graminearum plus CHA19/no treatment); Fus/CHA0, treatment of

one root half with F. graminearum after priming the other root half

with CHA0 for 2 d, thus avoiding direct contact between micro-

organisms, plotted ratio (F. graminearum/CHA0). Means 6SE, n¼8

for Ctrl, n¼8 for Fus, n¼5 for Fus&CHA0, n¼6 for Fus&CHA19, n¼5

for Fus/CHA0. Significant differences between treatment and control

were determined by Tukey’s HSD test; *P <0.05; **P <0.01.).

Fig. 2. Effect of Fusarium graminearum infection of roots in

a barley split-root system on carbon partitioning from the shoot

to (a) the entire root system and (b) each half of the root system.

Carbon partitioning was measured as the fraction of recent

photoassimilate mobilized from the 11CO2-labelled leaf to (a)

the entire root system and (b) each half of the root system.

Data were normalized to the value at the time of treatment.

(a) Ctrl, no infection on either root half; Fus, F. graminearum

infection on one root half; Fus/Fus, F. graminearum infection

on both root halves. (b) Ctrl, no infection on either root half;

Fus+, F. graminearum-infected root half; Fus–, corresponding

non-infected root half; Means 6SE, n¼9 for Ctrl, n¼8 for

FUS, n¼3 for FUS/FUS; significant differences between

treatment and control were determined by Tukey’s HSD test;

*P <0.05; **P <0.01).
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remained uninfected. This permitted the detection of shifts in

carbon allocation to each root half, which otherwise would

have remained undetected because infection of one root portion

with F. graminearum had no effect on total shoot/root

allocation of tracer. Instead, the infection led to a rapid

reduction in carbon partitioning from the shoot to infected

roots, with a corresponding benefit to the uninfected roots.

This shift was already visible 4.5 h after inoculation with

F. graminearum. Using the same experimental split-root sys-

tem, the application of the stress hormone jasmonic acid also

resulted in a redirection of carbon to the untreated root, but it

was considerably faster and already detectable within

20–30 min (Henkes et al., 2008). Both results suggest that

resources from the shoot are rapidly reallocated to a less

stress-exposed portion of the root system as part of an active

first line of defence until further defence mechanisms are

effective (Lanoue et al., 2010). In contrast to F. graminearum

infection or jasmonic acid treatment, cooling of part of the

root system which reduces sink capacity does not result in

such compensatory allocation of carbon to the non-cooled

root portion (Henkes et al., 2008). The redirection of carbon

to the untreated root portions in response to jasmonic acid

treatment or F. graminearum infection therefore implies the

participation of another mechanism, in addition to a reduced

sink capacity of the treated roots (Henkes et al., 2008). These

results suggest that a fast recognition of the pathogen during

infection affects the entire plant and may precede the

induction of pathogen response pathways. Microarray data

have demonstrated that inoculation with F. graminearum can

change gene expression within hours: defence-related genes are

up-regulated during early fungal stress (Bernardo et al., 2007)

and PR proteins are systemically expressed (Pritsch et al.,

2001), and plant-wide adjustments in carbon distribution may

be part of this first line of defence. Nevertheless, it was found

that F. graminearum led to a lower plant weight of the shoot

and both parts of the root system 1 week after infection,

suggesting that the pathogen overcame the plant defences and

successfully established a parasitic interaction.

The allocation of photoassimilates is often altered during

interactions with symbionts and pathogens. Infection with

arbuscular mycorrhiza increases the sink capacity of the

infected root half for carbon (Lerat et al., 2003). Similarly,

biotrophic pathogens distort allocation of photoassimilates

to their advantage (Hancock and Huisman, 1981), but this

behaviour has not been reported for necrotrophs. Alloca-

tion of shoot carbon away from infected and towards

uninfected barley roots was shown. This suggests a defence

strategy where the plant immediately shuts off resource

supply to infected roots upon pathogen recognition, analo-

gous to the hypersensitive response to local infections that

may limit pathogen growth (Kombrink and Schmelzer,

2001). The total below-ground carbon allocation did not

change, but disproportionately more energy and resources

were translocated to non-infected roots.

Pseudomonas–Fusarium interaction

Pseudomonads can reduce plant infection not only by direct

pathogen inhibition (Compant et al., 2005), but also by ac-

tivating plants defences (Pieterse et al., 2003). Results of the

presented split-root experiment showed that no direct contact

between bacteria and pathogenic fungi was required to reduce

infection symptoms, indicating that the effects of bacteria on

plant defences may be more important than the direct toxicity

of bacteria against the pathogen. Pre-inoculation of either the

infected or the distant root half with P. fluorescens CHA0

reduced both the early symptoms of the infection (distortion

of carbon allocation upon pathogen attack) and the long-term

impact of the infection on plant growth. Local and systemic

effects were of similar strength, suggesting that the induction

of systemic resistance mechanisms was as efficient as direct

contact with the pathogen. Various non-pathogenic root-

colonizing microorganisms, including pseudomonads, can an-

tagonistically affect Fusarium wilt. ISR of plants is important

in this interaction (van Loon et al., 1998). For example,

a systemic response was observed in a hydroponically grown

tomato culture, where prior inoculation of one root

Table 2. Ratio between the partitioning to each root’s half at the

different time points.

Values for one time point that are followed by the same letter do not
differ significantly (Tukey’s HSD test, P <0.05). Ctrl, no treatment to
either root half; Fus, Fusarium graminearum on one root half;
Fus&CHA0, F. graminearum and CHA0 on the same root half;
Fus&CHA19, F. graminearum and CHA19 on the same root half;
Fus/CHA0, F. graminearum an CHA0 on different root halves.

Time points

Treatments 1.5 h 4.5 h 23.0 h 25.5 h 28.5 h

Ctrl 1.02 a 1.02 a 1.05 a 1.02 a 0.98 ab

Fus 0.96 a 0.81 a 0.63 b 0.56 c 0.47 c

Fus&CHA0 0.97 a 0.93 a 1.08 a 0.99 ab 0.93 ab

Fus&CHA19 0.86 a 0.86 a 0.77 ab 0.68 bc 0.69 bc

Fus/CHA0 1.01 a 0.92 a 1.11 a 1.06 a 1.07 a

Table 1. ANOVA table of F- and P-values for the effects of

treatments on the relative root/root carbon partitioning over the

entire experiment (repeated measures ANOVA).

Significant effects (P <0.05) are highlighted in bold. Ctrl, no treatment
to either root half; Fus, Fusarium graminearum on one root half;
Fus&CHA0, F. graminearum preceded by CHA0 on the same root
half; Fus&CHA19, F.graminearum preceded by CHA19 on the same
root half; Fus/CHA0, F. graminearum preceded by CHA0 on different
root halves. Contrasts denote individual comparisons of means.

df F P

Factors

Treatment 4, 27 7.15 <0.001

Time 4, 27 3.15 0.017

Treatment3time 16, 108 3.60 <0.001

Contrasts

Ctrl versus Fus 1, 27 15.49 <0.001

Fus&CHA0 versus Ctrl 1, 27 0.01 0.910

Fus&CHA0 versus Fus&CHA19 1, 27 6.22 0.019

Fus&CHA0 versus Fus/CHA0 1, 27 0.38 0.539
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compartment with a non-pathogenic Fusarium strain reduced

the extent of infection of the other root compartment by

a pathogenic strain (Fuchs et al., 1997). The fluorescent

pseudomonads induce systemic resistance via the jasmonic

acid pathway (Iavicoli et al., 2003; Pieterse et al., 2003). In

addition, the production of toxins such as DAPG have

important side effects on plant growth (Brazelton et al., 2008)

and exudation of amino acids by the roots (Phillips et al.,

2004). In cucumber, inoculation of one side of the root system

with pseudomonads impairs the growth of Pythium aphanider-

matum on non-treated roots (Chen et al., 1998), and different

pseudomonads induce resistance against the pathogenic fun-

gus Fusarium oxysporum in the same plant system (Liu et al.,

1995). The present results indicate that plants can rapidly

adapt to complex and changing multipartite biotic inter-

actions. Interestingly, it was observed that although the

antibiotic-deficient strain P. fluorescens CHA19 did not com-

pletely suppress the effect of F. graminearum on carbon

partitioning, it still reduced the early distortion of the carbon

flow upon infection. CHA19 mutants do not produce

antifungal compounds such as pyrrolnitril or HCN (Blumer

et al. 1999), nor do they produce DAPG which is suspected to

induce systemic resistance in plants (Iavicoli et al., 2003). The

modest suppressive effect of this strain therefore suggests that

additional mechanisms may be involved in this plant–bacteria

interaction. The interactions are likely to be even more

complicated. Recently, it was shown that infected plant roots

seem able to alert pseudomonads via systemic responses on

distant root parts and stimulate their DAPG production upon

infection (Jousset et al., 2011). The response of plants to

maintain carbon supply to infected roots in the presence of

pseudomonads therefore could be interpreted as investment

in defence. Since systemic responses reduce the impact of

fungal infections it might be more advantageous to direct root

carbon sources to pseudomonads in order to ward off fungal

pathogens than to risk direct support for the fungus. From

basic evolutionary principles, one could alternatively assume

that the pseudomonads may show a selfish behaviour redirect-

ing root carbon resources to themselves and risking that the

fungal pathogen benefits as well.

In conclusion, this study demonstrates that barley re-

sponds rapidly to the presence of pathogens by shutting

down the carbon supply to infected roots within a day.

Immediate reduction of the carbon supply to attacked roots

may slow down the development of the pathogen until PR

genes are expressed, while non-infected roots are being

supplied with proportionally higher amounts of energy and

resources to ward off fungal attack. Plants that had been

primed with P. fluorescens CHA0 did not show distortion

of carbon allocation upon infection, and were less affected

in their development. The antibiotic-deficient mutant strain

P. fluorescens CHA19 only marginally protected the plant,

suggesting that bacterial exoproducts are key components

of the elicitation of plant defences. Further, the results

show that the biocontrol effect of P. fluorescens does not

require direct contact with the pathogen, and that systemic

induction of plant defences is sufficient to protect the plant.
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